COURSE OUTLINE

Description
This course continues the exploration of the luminous and thermal environments by extending the design considerations to include HVAC and utility system considerations, utility systems, acoustics, and the implications of all of these on sustainability. The course addresses mechanical and utilities systems selection and design; energy cost avoidance; energy code requirements; and sustainable architecture.

Objectives
The objectives of this course are to teach the student to understand:

- basic concepts of thermal performance in architecture;
- methods for selecting appropriate thermal systems for buildings;
- fundamentals of economic analysis for selection of energy systems;
- implications of energy codes building design;
- fundamentals of life-cycle cost analysis building systems;
- basic electrical systems employed in buildings;
- fundamentals of plumbing systems;
- fundamentals of electrical systems;
- fundamentals of architectural acoustics;

Teaching Philosophy
The built environment acts as the students’ own living learning laboratory and provides a means to integrate course concepts into explorations in studio and professional practice. Lectures and readings form the foundation of the course. Recitations allow for a discussion and deeper exploration of specific course materials and concepts which typify situations that an architect encounters in practice. Projects are designed to sensitize students to the past, present, and future built world and how proven concepts of environmental control and sustainability can be integrated into the built environment.

Student interaction forms an important part of my teaching philosophy. The questions and the resulting discussions bring significant vitality to the course. Students are strongly encouraged to proactively ask questions to initiate discussions as well as seek clarity on materials presented in the lecture and recitations.

Outside the classroom, it is expected that students will also seek further inquiry that fosters the formation of their life-long learning skills. This includes

“Be the change you want to see in the world.”
- M. Gandhi

January 11, 2010
completing class readings before each lecture, investigations at the library and other resources, working in study groups, and consultations with the teaching assistant and the instructor.

Organization

Class Hours Lectures will be 8:35-10:30 AM, in Room 127 AAC as indicated on the syllabus. There will be a recitation period on 2:00-5:00 PM on Tuesdays in Room 127. Desk Crits and examinations will be in the 3rd floor studio.

Instructor/Office Hours Robert A. Young, PE; 581-3909; young@arch.utah.edu; Room 240 AAC, MW 10:30-11:30 AM; or by appointment.

Teaching Assistant Brian Derrick will be available for consultation outside of the classroom for questions and will assist in grading.

WebSite Students should periodically consult the instructor’s web site www.arch.utah.edu/young for updates on assignments and other course information.

Recitation There will be a recitation on Tuesdays from 2:00-5:00 PM. The recitation will meet in Room 127 AAC, the third floor studio, Bailey Hall, or at site visit locations as described in the course schedule. Recitations will be composed of interactive exercises, site visits, discussions and review of course materials, release time, or studio consultations for projects.

Decorum & Attendance Punctuality, professionalism, and leadership are valued by clients, employers, colleagues, and faculty. As such, students should be ready to begin class at the scheduled start time and be prepared to ask and answer questions. Pagers and cell phones must be turned off or set to non-audio mode. Do not eat in class.
Class begins with announcements and questions to and from the class and the resultant discussions. Participation goes beyond just coming to class and taking notes. Leaders ask questions and seek clarity to foster greater understanding for themselves and for the class. Leaders engage the class in learning course materials both inside and outside the classroom.

Due to the quantity of materials covered, it is recommended that students attend class lectures regularly, ask questions, and keep up with the reading. Students’ participation and leadership qualities in class lectures, recitations, and projects will be used in consideration of their final course grade.

Projects

These projects must be submitted to meet the course completion requirements:

(1) Technology Integration Case Study
(2) Electric Light Fixture Project
(3) Integrated Studio Project

Students are responsible for all in-class instructions on projects. Projects are by the start of the class session on the day they are due.

Due to the size of the class, projects will be done in teams of 4 students per team or a maximum of twelve student teams.

Project grades will be based on completeness, accuracy, technical comprehension, legibility, and originality. See grading form on the website for further information.

Late Policy

Late work will be penalized one full letter grade (e.g., an "A" will become a "B", etc.) for any part of the first calendar day and one full letter grade per day thereafter. All unsubmitted late work must be turned in by 5:00 PM on the last day of the regular semester classes (not finals week) to receive completion credit even though it may be too late for a letter grade.

Examinations

Examinations will be given in the third floor design studio and will be completed during the regular class period. The open book and open notes examinations will cover
all readings, recitations, site visits, case studies, discussions, and lecture materials. Bring a #2 pencil, and a calculator. Questions should be answered on the grading sheet. Answer sheets and examinations must be turned in at the end of the examination. Students should leave when done so others may finish the exam undisturbed.

Results will be posted at a minimum of 48 hours after all students have taken the examination.

Arrangements for students with learning difficulties should be made prior to the examination. Makeup examinations will only be given for medical or legal related reasons. Students arriving late will be penalized for their tardiness (e.g., no extra time).

Children, pets, and guests are not allowed during the examination. Do not eat during the exam.

Grading

Final grades will be based on the following credit:

<table>
<thead>
<tr>
<th>Item</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Study Project</td>
<td>100 points</td>
</tr>
<tr>
<td>Electric Lighting Fixture</td>
<td>100 points</td>
</tr>
<tr>
<td>Integrated Studio Project</td>
<td>100 points</td>
</tr>
<tr>
<td>Examinations (2 @ 100 points)</td>
<td>200 points</td>
</tr>
<tr>
<td>Total</td>
<td>500 points</td>
</tr>
</tbody>
</table>

Grades will be based on the following cut off points:

A: 465 points C: 365 points
A-: 450 points C-: 350 points
B+: 435 points D+: 335 points
B: 415 points D: 315 points
B-: 400 points D-: 300 points
C+: 385 points E: <300 points.

Accessibility

The University of Utah College of Architecture + Planning seeks to provide equal access to its programs, services, and activities for people with disabilities. Reasonable prior notice is needed to arrange accommodations.

University Curriculum Administration Notes

Last day to drop (delete) classes: January 21, 2009
Last day to add classes: January 26, 2009
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Page Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>Course Introduction</td>
<td>SR-1</td>
</tr>
<tr>
<td>11 M</td>
<td>First Tuesday Forum</td>
<td></td>
</tr>
<tr>
<td>12 T</td>
<td>Heat Loss/Gain</td>
<td>171-209, App. E-G</td>
</tr>
<tr>
<td>13 W</td>
<td>Martin Luther King Holiday – No Class</td>
<td></td>
</tr>
<tr>
<td>18 M</td>
<td>Case Study Presentations: Teams 1-4</td>
<td></td>
</tr>
<tr>
<td>19 T</td>
<td>Heat Loss/Gain</td>
<td></td>
</tr>
<tr>
<td>20 W</td>
<td>Heating/Cooling Loads</td>
<td>SR-3</td>
</tr>
<tr>
<td>25 M</td>
<td>Case Study Presentations: Teams 5-8</td>
<td></td>
</tr>
<tr>
<td>26 T</td>
<td>Heat Loss/Gain</td>
<td></td>
</tr>
<tr>
<td>27 W</td>
<td>Heating/Cooling Loads</td>
<td>SR-4</td>
</tr>
<tr>
<td>February</td>
<td>HVAC Systems</td>
<td>317-455</td>
</tr>
<tr>
<td>1 M</td>
<td>Case Study Due</td>
<td></td>
</tr>
<tr>
<td>2 T</td>
<td>Case Study Presentations: Teams 9-12</td>
<td></td>
</tr>
<tr>
<td>3 W</td>
<td>HVAC Systems</td>
<td></td>
</tr>
<tr>
<td>8 M</td>
<td>HVAC Systems Review</td>
<td></td>
</tr>
<tr>
<td>9 T</td>
<td>Light Fixture Studio Consultations</td>
<td></td>
</tr>
<tr>
<td>10 W</td>
<td>Examination #1</td>
<td></td>
</tr>
<tr>
<td>15 M</td>
<td>President’s Day – No Class</td>
<td></td>
</tr>
<tr>
<td>16 T</td>
<td>Light Fixture Studio Consultations</td>
<td>SR-2</td>
</tr>
<tr>
<td>February</td>
<td>Water Resources</td>
<td>855-1045</td>
</tr>
<tr>
<td>17 W</td>
<td>Plumbing Design</td>
<td></td>
</tr>
<tr>
<td>22 M</td>
<td>Light Fixture Exhibition</td>
<td></td>
</tr>
<tr>
<td>23 T</td>
<td>Plumbing Design</td>
<td></td>
</tr>
<tr>
<td>24 W</td>
<td>Architectural Acoustics</td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>Electrical Systems</td>
<td>1145-1333</td>
</tr>
<tr>
<td>1 M</td>
<td>Light Fixture Exhibition</td>
<td></td>
</tr>
<tr>
<td>2 T</td>
<td>Electric Lighting Project Due by 2:00 PM</td>
<td></td>
</tr>
<tr>
<td>3 W</td>
<td>Acoustics</td>
<td>727-852, App. K,L</td>
</tr>
<tr>
<td>8 M</td>
<td>Acoustics</td>
<td>SR-6, SR-7</td>
</tr>
<tr>
<td>9 T</td>
<td>Lighting Fixture Exhibition</td>
<td></td>
</tr>
<tr>
<td>10 W</td>
<td>Acoustics</td>
<td></td>
</tr>
<tr>
<td>15 M</td>
<td>Acoustics</td>
<td></td>
</tr>
<tr>
<td>16 T</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>17 W</td>
<td>Examination #2</td>
<td></td>
</tr>
</tbody>
</table>
SUPPLEMENTAL READINGS

- **SR-1** ARCH-4372/6372 Course pack
- **SR-2** Lighting Project Suppliers Resources
- **SR-3** Heating and Cooling Load Calculation Forms
- **SR-4** Heat Flow Worksheet
- **SR-5** Plumbing Worksheet
- **SR-6** Acoustics Supplement
- **SR-7** Acoustics Worksheet

REFERENCE LIST (SELECTED)

American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

Butti, Ken. A Golden Thread: 2500 years of Solar Architecture and Technology
Holdsworth, W. J. Healthy Buildings: A Design Primer for a Living Environment
Kibert, Charles J. Sustainable Construction: Green Building Design and Delivery.
Leitmann, Josef. Sustaining Cities: Environmental Planning and Management in
Luccarelli, Mark. Lewis Mumford and the Ecological Region: The Politics of
Mendler, Sandra, William Odell, and May Ann Lazarus. The HOK Guidebook to
Michel, Lou, Light: The Shape of Space Designing With Space and Light, New
Moore, Fuller, Concepts and Practice of Architectural Daylighting, New York: Van
Rocky Mountain Institute, Dianna Lopez Barnett with William D. Browning. A
Primer on Sustainable Building. Snowmass, CO: Rocky Mountain Institute,
1995.
Rocky Mountain Institute et. al. Green Development: Integrating Ecology and
Roseland, Mark, with Maureen Cureton and Heather Wornell. Toward
Sustainable Communities: Resources for Citizens and Their Governments.
Steele, James. Sustainable Architecture: Principles, Paradigms, and Case
Steffy, Gary, Time-saver standards for architectural lighting, New York: McGraw-
Williams, Daniel E. Sustainable Design: Ecology, Architecture, and Planning,
Vale, Brenda. Green Architecture: Design for an Energy Conscious Future
Watson, Donald and Labs, Kenneth. Climatic Design: Energy Efficient Building
Wigginton, Michael and Jude Harris. Intelligent Skins, Oxford, ENG: Butterworth
Heineman, 2002

January 11, 2010
TECHNOLOGY INTEGRATION CASE STUDY

Introduction

This project provides an opportunity to further explore building technology as a case study. This case study can take either of two formats. The first format is to identify a particular building and investigate how the building systems have been integrated within it. The second format is to take a particular technology and investigate how it is used in several buildings.

Objectives

The objectives of this assignment are:

• To introduce the student to the practice of evaluating how building technology is integrated into a building.
• To heighten the student's sensitivities to how the built environment (e.g., new and existing buildings) can be enhanced by these processes.

Procedure

Develop a case study that illustrates the topic you are investigating. The case study will (A) define the topic (250 words), (B) explain how you researched or developed the topic (250 words), (C) explain why an architect should be familiar with this topic (250 words), (D) explore examples and describe the implications for the future built and natural environments (1000-1500 words), and (E) provide your conclusions about this topic (250 words). Select one of the two following formats and pick a topic to investigate.

Format 1: Select a completed new construction or rehabilitation/adaptive reuse of an existing building. The building can be located in Utah or elsewhere in the world. Investigate the building (its systems and its context) to determine how well the construction methods, architectural tectonics and building systems are integrated to enhance its sustainability and the sustainability of the community where it is located. Where possible, show how the building is adapted (or not) to meet the demands of the local climate or is derived from the vernacular construction types prevalent in that climate region.

Format 2: Select a specific type of building system (e.g., HVAC, lighting, building automation and control, plumbing) or architectural tectonic (e.g., double envelope, daylighting, underground construction, thermal mass, rammed earth, green roofs) and determine how well its integration into a project can enhance the sustainable attributes of the building and the community where it is located. Use several buildings using the same type of system or tectonic to demonstrate how widely it currently is used. Discuss the positive and negative aspects of using such a system or tectonic. Compare and contrast the selected system or tectonic with other systems or tectonics used for the same purpose.
Research and prepare the written case study (2000-2500 words) that provides the information in criteria A-E as stated above. From the case study prepare an 8-10 minute video presentation. Then transform the presentation into a story board (e.g., Powerpoint handout w/ 6 images per page; in a legible 8-1/2" x 11” format). The presentation should consist of an integration of narration, still images, drawings, and text, and video clips/ animations. Use captions to note sources of photographs, video clips, and animations. Since digital technology has compatibility constraints, prepare a pre-production version of presentation and do a “dress rehearsal” prior to the actual presentation. Finalize the presentation media and create a final story board based on the actual presentation. As part of the project each team will present their findings (10 minutes) and lead a discussion/Q&A session (20 minutes) after their presentation.

Grading Criteria

Refer to the grading criteria at the end of the syllabus or on the class website. Presentations that do not conform to the expected time lengths will be penalized.

Schedule

This project will take the first four weeks of the semester.

Week 1: Form teams of 4 students; sign up team with instructor; identify topic
Week 2: Teams 1-4 present
Week 3: Teams 5-8 present
Week 4: Teams 9-12 present; project due as shown on syllabus

Products

Each team will present their findings and lead a discussion on their topic as shown in the schedule. Submit a single pc-compatible disk that includes your case study, the final digital presentation, and your final presentation story board file. The disk should be labeled with team members’ names and be enclosed in a protective cover.
ELECTRIC LIGHTING FIXTURE

Introduction

This project is an opportunity to design light fixtures using standard components as an architectural expression. Electric lighting can use architectural elements drawn from the vocabulary of a building itself to provide illumination to a given space. Safety requirements that dictate fixtures must satisfy conditions for safety from overheating and potential injury from handling the lamp are of utmost importance for this project.

Objectives

The objectives include:

- To enhance visual analysis skills.
- To enhance understanding of light fixture design and construction.
- To design a point source light fixture.

Procedure

Design a point source light fixture based on your design parti for this semester’s studio project. The lamp within the fixture should not be visible when in use. Attention to glare and the appropriate cut off angles should be considered as integral to the basic design. In preparing the design, ask yourself the question “Would someone pay an architect to design this light fixture rather than simply buy it from a local distributor?” If you can not answer this affirmatively, then you should continue refining the design until you can.

Advisory Note: The best lighting fixture projects from previous classes were created by students who began their design (and fabrication process) several weeks prior to the submission deadline. A number of students who waited until 2-3 days prior to the deadline later expressed regrets about not spending more time developing their designs earlier, particularly when compared with students who had. So begin planning the design of this fixture several weeks ahead of time, even if the actual final fabrication and photometric analysis portion of the project occurs just prior to the deadline. The instructor will be available for desk consultation as noted in the syllabus and office hours. Also keep in mind that there are only a limited number of light meters available so waiting until the last minute to do the photometric measurements is not advisable.

Good lighting fixtures provide a well designed composition of elements that safely meets performance requirements and adheres to budget constraints. For this project a 60W incandescent lamp is suggested to keep costs down. However, more expensive lamps (e.g., compact fluorescents, LED) may be used.
as students’ economic situation allows. Although the impulse to use high end materials and components may tempt you to spend a significant amount of money, the raw materials and components for the finished light fixture should cost no more than $50. With careful attention to materials and components, the project can be successfully completed for significantly less than that amount. The reuse of “found” or recycled materials is encouraged.

Components such as transformers for low voltage lighting systems, touch sensitive switches, LED components, and fiber optics can be expensive and may require a lead time (e.g., 5 or more business days for normal delivery) if ordered from online distributors. If you are ordering components online, allow for the lead time needed for their delivery.

Keep it simple! One useful approach is to understand the fixture as a collection of smaller pieces arranged into a larger composition. This is the basis of the paper and wood fixtures available at popular contemporary furniture stores.

Suggested materials include paper, balsa wood, tinfoil, glue, and paint. You are welcome to explore other materials, such as glass, metals, plastics, and recycled/found objects. Although in practice lighting fixtures can be wired into an electrical system and controlled by a light switch, for this project, all fixtures must have an on/off switch and be able to be plugged into a standard wall receptacle.

The fixture should be vented to allow heat from the lamp to escape safely. To reduce fire hazard, materials should not come in contact with the lamp. Above all, unless you intend to develop an appropriate structural support system, keep it lightweight.

The light fixture should either sit on a table top or be suspended from the ceiling. Students who wish to design a surface mounted lamp will need to fabricate their own individual mounting and testing surface. Fixtures must be assembled from "scratch" and not simply consist of a reused fixture, although components from other fixtures may be salvaged and reused. The finished fixture, when fully assembled, must be operable and fit within a 24” cube. Failure to do so will penalize the project up to one full letter grade for each missed requirement.

The fixtures will be evaluated based on visual comfort attributes (glare elimination and functionality), accuracy and presentation of specification sheet, quality of craftsmanship, safety, functional operation, maintainability, and design aesthetics. Fixtures should be designed to withstand the heat of the lamp so as not overheat, melt, burn assembly materials, or surrounding surfaces. Fixtures should include precautions for safety (e.g., no sharp or jagged edges, or pointed protrusions which may injure the user).

Having assembled the light fixture, develop the description and specifications used in the marketing of commercial lighting fixtures. Measurement of the lamps should be made in a room with no exterior light sources. Ideally the floors, walls,
and ceilings should be dark to minimize the unwanted effects of light reflected from these surfaces. You should place your fixture so that the light source has a minimum 42 inch clearance to allow light measurement. Your objective is to make a series of seven light meter readings with the light meter sensor aimed at the light, each at a distance of 36 inches from the center of the lamp. For suspended fixtures, the first should be with the light meter directly above the fixture with the sensor aimed down; the last should be directly below the fixture with the sensor aimed up. Intermediate readings should be made at the 30 degree increments with the meter sensor aimed at the center of the light. For table-top and surface-mounted fixtures begin on one side of the fixture and complete the seven readings in 30 degree increments until completing the 180 degree arc.

Calculate the candlepower (CP) at each angle increment using the following formula:

$$CP = fc \times D^2$$

where:

- CP = candlepower
- fc = meter reading in foot-candles
- D = distance from center of light source to meter, in feet.

For example, if a reading of 130 fc was taken with the meter 36 inches from the center of the light, the candlepower CP=$130 \times (3)^2 = 1170.$

Graph the CP of your lamp on the photometric chart. In the specification sheet for surface mounted fixtures, orient the photometric curve to indicate the surface orientation relative to the light fixture. Be sure to scale your graph by labeling the CP circles on the graph. The single-page, single-sided (8-1/2” x 11”) specification form should include:

1. Designer: your name
2. Name of Lamp
3. A photo of your lamp.
4. Specifications/Description: this is to be a verbal description of the lamp, the resulting light characteristics, and possible applications.
5. Section and Dimensions: include a clear, simple line drawing of the lamp in section with dimensions noted.
6. CP photometric distribution curve.

Product

For the lighting exhibit, prepare a 1-3 minute oral presentation of how the fixture represents your studio project parti and how the fixture will be used in the building. Use the template provided below as the guide for the specification sheet so that the class projects can be compiled into a catalogue. You are encouraged to make it a more powerful presentation through the use of color,
computer graphics, etc. Submit your fixture along with one "original" and one copy of your specification sheet for comments. The original will be retained by the instructor and the copy and fixture will be returned to you. On a CD, include a copy of the specification sheet file and a photo of your fixture that will be considered for inclusion in the class gallery on the College website.

Grading Criteria

The specification sheet must include the required components given above. The fixture will be graded on design creativity, functionality (the lamp must be operable and produce the desired light for its intended purpose), safety considerations, utility considerations (switch location, ease of changing the lamp), design integration of components (coordination of color/materials, cord color, cord switch or other switch type).
TECHNOLOGY INTEGRATION PROJECT

Introduction

It is critical to integrate environmental control technologies into designs to enhance the quality of life and mitigate the depletion of natural resources. Using architectural form as an environmental control system is a fundamental practice that enhances environmental awareness and sensitivity towards sustainability.

Objective

To introduce the student to the integration of environmental controls technology into sustainable building design and to heighten the student’s sensitivity to the interactions of thermal, visual, and acoustical comfort.

Procedure

The student will use the final studio project to demonstrate her or his ability to integrate the concepts covered in environmental controls technology integration courses. The student will consult with the instructor to develop the sustainable design strategies using studio consultations as noted on the syllabus. There will be a sign-up sheet posted. Students who have not previously signed up prior to a studio consultation session period will be seen only on a time-available basis. The student will integrate the environmental control strategies into the drawings, images, and models required for the studio presentations and juries. Concepts should be clearly articulated and readily legible. The student is encouraged to add “vignette” drawings and sketches to explain environmental control concepts directly. The students must prepare a summary (8-1/2 x 11 format, 8-10 pages long) to describe the integrated concepts. It is expected that the primary images used in the summary will come directly from the drawings, animations, and other images used in the student’s final presentation.

Product

Two versions of the summary should be submitted on a CD. One shall be in its native format (e.g., .doc, .ppt) and one shall be a .pdf version of the original. All environmental strategies must be legible within the presentation and the booklet. Turn in the CD to the instructor as noted in the syllabus.

Grading Criteria

Grades will be based on integrating environmental controls as follows:

- Daylighting: 40
- Passive Thermal Control/HVAC: 30
- Microclimate/Regional Vernacular: 20
- Utility Systems/Acoustics: 10

100%

January 11, 2010